Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bioenerg Biomembr ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436904

RESUMO

The plasma membrane Ca2+-ATPase (PMCA) is crucial for the fine tuning of intracellular calcium levels in eukaryotic cells. In this study, we show the presence of CARC sequences in all human and rat PMCA isoforms and we performed further analysis by molecular dynamics simulations. This analysis focuses on PMCA1, containing three CARC motifs, and PMCA4, with four CARC domains. In PMCA1, two CARC motifs reside within transmembrane domains, while the third is situated at the intracellular interface. The simulations depict more stable RMSD values and lower RMSF fluctuations in the presence of cholesterol, emphasizing its potential stabilizing effect. In PMCA4, a distinct dynamic was found. Notably, the total energy differences between simulations with cholesterol and phospholipids are pronounced in PMCA4 compared to PMCA1. RMSD values for PMCA4 indicate a more energetically favorable conformation in the presence of cholesterol, suggesting a robust interaction between CARCs and this lipid in the membranes. Furthermore, RMSF analysis for CARCs in both PMCA isoforms exhibit lower values in the presence of cholesterol compared to POPC alone. The analysis of H-bond occupancy and total energy values strongly suggests the potential interaction of CARCs with cholesterol. Given the crucial role of PMCAs in physiological calcium regulation and their involvement in diverse pathological processes, this study underscores the significance of CARC motifs and their interaction with cholesterol in elucidating PMCA function. These insights into the energetic preferences associated with CARC-cholesterol interactions offer valuable implications for understanding PMCA function in maintaining calcium homeostasis and addressing potential associated pathologies.

2.
Arch Med Res ; 55(2): 102937, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301446

RESUMO

BACKGROUND: The nasal vaccine HB-ATV-8 has emerged as a promising approach for NAFLD (non-alcoholic fatty liver disease) and atherosclerosis prevention. HB-ATV-8 contains peptide seq-1 derived from the carboxy-end of the Cholesteryl Ester Transfer Protein (CETP), shown to reduce liver fibrosis, inflammation, and atherosclerotic plaque formation in animal models. Beyond the fact that this vaccine induces B-cell lymphocytes to code for antibodies against the seq-1 sequence, inhibiting CETP's cholesterol transfer activity, we have hypothesized that beyond the modulation of CETP activity carried out by neutralizing antibodies, the observed molecular effects may also correspond to the direct action of peptide seq-1 on diverse cellular systems and molecular features involved in the development of liver fibrosis. METHODS: The HepG2 hepatoma-derived cell line was employed to establish an in vitro steatosis model. To obtain a conditioned cell medium to be used with hepatic stellate cell (HSC) cultures, HepG2 cells were exposed to fatty acids or fatty acids plus peptide seq-1, and the culture medium was collected. Gene regulation of COL1A1, ACTA2, TGF-ß, and the expression of proteins COL1A1, MMP-2, and TIMP-2 were studied. AIM: To establish an in vitro steatosis model employing HepG2 cells that mimics molecular processes observed in vivo during the onset of liver fibrosis. To evaluate the effect of peptide Seq-1 on lipid accumulation and pro-fibrotic responses. To study the effect of Seq-1-treated steatotic HepG2 cell supernatants on lipid accumulation, oxidative stress, and pro-fibrotic responses in HSC. RESULTS AND CONCLUSION: Peptide seq-1-treated HepG2 cells show a downregulation of COLIA1, ACTA2, and TGF-ß genes, and a decreased expression of proteins such as COL1A1, MMP-2, and TIMP-2, associated with the remodeling of extracellular matrix components. The same results are observed when HSCs are incubated with peptide Seq-1-treated steatotic HepG2 cell supernatants. The present study consolidates the nasal vaccine HB-ATV-8 as a new prospect in the treatment of NASH directly associated with the development of cardiovascular disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Vacinas , Animais , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-2/farmacologia , Metaloproteinase 2 da Matriz , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Regulação para Baixo , Hepatócitos/metabolismo , Fibrose , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Ácidos Graxos/metabolismo , Lipídeos/farmacologia , Fígado/metabolismo
3.
Mol Med ; 28(1): 157, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536294

RESUMO

BACKGROUND: Sepsis is a syndrome where the dysregulated host response to infection threatens the life of the patient. The isoform of the cholesteryl-ester transfer protein (CETPI) is synthesized in the small intestine, and it is present in human plasma. CETPI and peptides derived from its C-terminal sequence present the ability to bind and deactivate bacterial lipopolysaccharides (LPS). The present study establishes the relationship between the plasma levels of CETPI and disease severity of sepsis due to Gram-negative bacteria. METHODS: Plasma samples from healthy subjects and patients with positive blood culture for Gram-negative bacteria were collected at the Intensive Care Unit (ICU) of INCMNSZ (Mexico City). 47 healthy subjects, 50 patients with infection, and 55 patients with sepsis and septic shock, were enrolled in this study. CETPI plasma levels were measured by an enzyme-linked immunosorbent assay and its expression confirmed by Western Blot analysis. Plasma cytokines (IL-1ß, TNFα, IL-6, IL-8, IL-12p70, IFNγ, and IL-10) were measured in both, healthy subjects, and patients, and directly correlated with their CETPI plasma levels and severity of clinical parameters. Sequential Organ Failure Assessment (SOFA) scores were evaluated at ICU admission and within 24 h of admission. Plasma LPS and CETPI levels were also measured and studied in patients  with liver dysfunction. RESULTS: The level of CETPI in plasma was found to be higher in patients with positive blood culture for Gram-negative bacteria that in control subjects, showing a direct correlation with their SOFA values. Accordingly, septic shock patients showing a high CETPI plasma concentration, presented a negative correlation with cytokines IL-8, IL-1ß, and IL-10. Also, in patients  with liver dysfunction, since higher CETPI levels correlated with a high plasma LPS concentration, LPS neutralization carried out by CETPI might be considered a physiological response that will have to be studied in detail. CONCLUSIONS: Elevated levels of plasma CETPI were associated with disease severity and organ failure in patients  with Gram-negative bacteraemia, defining CETPI as a protein implicated in the systemic response to LPS.


Assuntos
Bacteriemia , Proteínas de Transferência de Ésteres de Colesterol , Sepse , Choque Séptico , Humanos , Citocinas , Ésteres , Interleucina-10 , Interleucina-8 , Lipopolissacarídeos , Peptídeos , Isoformas de Proteínas , Proteínas de Transferência de Ésteres de Colesterol/sangue
4.
Arch Med Res ; 52(8): 798-807, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34429232

RESUMO

During the last years, infections have become a global health emergency, where the appearance of bacteria highly resistant to traditional antibiotics have set off an alarm worldwide. Moreover, the increased incidence and mortality resulting from its aggravated states, sepsis, and septic shock, have been observed with growing concern. In this context, knowing the need for a new concept for treatment, peptides such as antimicrobial peptides (AMP) and host defense peptides (HDP), have started to show interesting properties in the development of new antimicrobial agents and host response modulatory therapies. Nevertheless, since it is a well-known fact that a peptide-based drug development is a long process that consumes a significant number of resources, recent approaches that tend to mitigate these obstacles, have included the implementation of novel in silico strategies for the optimization of naturally occurring AMP and HDP. In this review, we analyze these strategies that seek to improve not only peptide design, but also production, by including the incorporation of computational biology techniques such as molecular dynamics.


Assuntos
Sepse , Choque Séptico , Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Antimicrobianos , Humanos , Lipopolissacarídeos , Sepse/tratamento farmacológico , Choque Séptico/tratamento farmacológico
5.
Biomed Pharmacother ; 141: 111890, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34229252

RESUMO

The complex pathophysiology of sepsis makes it a syndrome with limited therapeutic options and a high mortality rate. Gram-negative bacteria containing lipopolysaccharides (LPS) in their outer membrane correspond to the most common cause of sepsis. Since the gut is considered an important source of LPS, intestinal damage has been considered a cause and a consequence of sepsis. Although important in the maintenance of the intestinal epithelial cell homeostasis, the microbiota has been considered a source of LPS. Recent studies have started to shed light on how sepsis is triggered by dysbiosis, and an increased inflammatory state of the intestinal epithelial cells, expanding the understanding of the gut-liver axis in sepsis. Here, we review the gut-liver interaction in Gram-negative sepsis, exploring the mechanisms of LPS inactivation, including the recently described contribution of an isoform of the cholesteryl-ester transfer protein (CETPI). Although several key questions remain to be answered when the pathophysiology of sepsis is reviewed, new contributions coming to light exploring the way LPS might be inactivated in vivo, suggest that new applications might soon reach the clinical setting.


Assuntos
Lipopolissacarídeos/antagonistas & inibidores , Sepse/tratamento farmacológico , Animais , Proteínas de Transferência de Ésteres de Colesterol/genética , Microbioma Gastrointestinal , Humanos , Sepse/microbiologia , Sepse/fisiopatologia
6.
Sci Rep ; 11(1): 14752, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285283

RESUMO

The present investigation using Positron Emission Tomography shows how peptide VSAK can reduce the detrimental effects produced by lipopolysaccharides in Dutch dwarf rabbits, used to develop the Systemic Inflammatory Response Syndrome (SIRS). Animals concomitantly treated with lipopolysaccharides (LPS) and peptide VSAK show important protection in the loss of radiolabeled-glucose uptake observed in diverse organs when animals are exclusively treated with LPS. Treatment with peptide VSAK prevented the onset of changes in serum levels of glucose and insulin associated with the establishment of SIRS and the insulin resistance-like syndrome. Treatment with peptide VSAK also allowed an important attenuation in the circulating levels of pro-inflammatory molecules in LPS-treated animals. As a whole, our data suggest that peptide VSAK might be considered as a candidate in the development of new therapeutic possibilities focused on mitigating the harmful effects produced by lipopolysaccharides during the course of SIRS.


Assuntos
Glucose/metabolismo , Lipopolissacarídeos/administração & dosagem , Peptídeos/administração & dosagem , Tomografia por Emissão de Pósitrons , Síndrome de Resposta Inflamatória Sistêmica/patologia , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Fluordesoxiglucose F18/química , Glucose/análise , Insulina/sangue , Interleucina-1beta/sangue , Rim/diagnóstico por imagem , Rim/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipopolissacarídeos/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Masculino , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Coelhos , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Fator de Necrose Tumoral alfa/sangue
7.
Biomolecules ; 10(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824918

RESUMO

Human islet amyloid polypeptide (hIAPP) corresponds to a 37-residue hormone present in insulin granules that maintains a high propensity to form ß-sheet structures during co-secretion with insulin. Previously, employing a biomimetic approach, we proposed a panel of optimized IAPP sequences with only one residue substitution that shows the capability to reduce amyloidogenesis. Taking into account that specific membrane lipids have been considered as a key factor in the induction of cytotoxicity, in this study, following the same design strategy, we characterize the effect of a series of lipids upon several polypeptide domains that show the highest aggregation propensity. The characterization of the C-native segment of hIAPP (residues F23-Y37), together with novel variants F23R and I26A allowed us to demonstrate an effect upon the formation of ß-sheet structures. Our results suggest that zwitterionic phospholipids promote adsorption of the C-native segments at the lipid-interface and ß-sheet formation with the exception of the F23R variant. Moreover, the presence of cholesterol did not modify this behavior, and the ß-sheet structural transitions were not registered when the N-terminal domain of hIAPP (K1-S20) was characterized. Considering that insulin granules are enriched in phosphatidylserine (PS), the property of lipid vesicles containing negatively charged lipids was also evaluated. We found that these types of lipids promote ß-sheet conformational transitions in both the C-native segment and the new variants. Furthermore, these PS/peptides arrangements are internalized in Langerhans islet ß-cells, localized in the endoplasmic reticulum, and trigger critical pathways such as unfolded protein response (UPR), affecting insulin secretion. Since this phenomenon was associated with the presence of cytotoxicity on Langerhans islet ß-cells, it can be concluded that the anionic lipid environment and degree of solvation are critical conditions for the stability of segments with the propensity to form ß-sheet structures, a situation that will eventually affect the structural characteristics and stability of IAPP within insulin granules, thus modifying the insulin secretion.


Assuntos
Homeostase , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Lipídeos/química , Humanos , Células Secretoras de Insulina/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Conformação Proteica em Folha beta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...